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Abstract
While radiologists regularly issue follow-up recommendations, our preliminary research has shown that anywhere
from 35 to 50% of patients who receive follow-up recommendations for findings of possible cancer on
abdominopelvic imaging do not return for follow-up. As such, they remain at risk for adverse outcomes related to
missed or delayed cancer diagnosis. In this study, we develop an algorithm to automatically detect free text radiol-
ogy reports that have a follow-up recommendation using natural language processing (NLP) techniques and machine
learning models. The data set used in this study consists of 6000 free text reports from the author’s institution. NLP
techniques are used to engineer 1500 features, which include the most informative unigrams, bigrams, and trigrams
in the training corpus after performing tokenization and Porter stemming. On this data set, we train naive Bayes,
decision tree, and maximum entropy models. The decision tree model, with an F1 score of 0.458 and accuracy of
0.862, outperforms both the naive Bayes (F1 score of 0.381) and maximum entropy (F1 score of 0.387) models. The
models were analyzed to determine predictive features, with term frequency of n-grams such as “renal neoplasm”
and “evalu with enhanc” being most predictive of a follow-up recommendation. Key to maximizing performance was
feature engineering that extracts predictive information and appropriate selection of machine learning algorithms
based on the feature set.

Keywords Artificial intelligence .Binary classification .Follow-up .Machine learning .Natural languageprocessing .Structured
reporting

Hypothesis

Natural language processing’s ability to detect follow-up rec-
ommendations is dependent on feature engineering that pro-
duces features with high mutual information and subsequent
selection of machine learning algorithms. Because radiology
reports tend to generate large feature spaces, algorithms that
are appropriate for large feature sets will offer improved
performance.

Background

Many patients have incidental findings that are suspi-
cious of malignancy or indeterminate, which warrant
follow-up imaging. Unfortunately, a large portion of pa-
tients do not get follow-up imaging [1, 2]. In particular,
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for abdominal imaging at our tertiary care center, we
have found that up to half of patients with recommend-
ed follow-up imaging did not complete any follow-up
[3]. This represents a large population of patients that
are at risk for adverse outcomes due to missed or de-
layed cancer diagnoses. There are many reasons why
patients do not get follow-up imaging. For example,
referring physicians may not address follow-up imaging
because it does not require immediate action or because
it is not related to the medical concern for which the
original imaging was indicated. A solution to this issue
is explicitly specifying follow-up recommendations in
the report so that such patients can be monitored for
completion [3]. While structured reporting could explic-
itly indicate the need for follow-up, the fact is many
radiology reports remain unstructured or loosely struc-
tured [4]. Automated identification of follow-up recom-
mendations in radiology reports would allow for auto-
mated tracking of patients requiring follow-up and help
to decrease the number of patients who experience ad-
verse outcomes due to missed follow-up. In this study,
we develop an algorithm to automatically detect free
text radiology reports that have a follow-up recommen-
dation using natural language processing (NLP) tech-
niques and machine learning (ML) models.

Due to the nature of the radiology reports that serve
as our input data, our approach makes extensive use of
natural language processing (NLP). Although usage of
structured reporting is certainly on the rise, the bulk of
a radiology report’s content may still be free text clin-
ical narrative [5]. At our institution, the majority of a
typical radiology report is still loosely structured text.
Structured data must first be generated from the free
text in order to perform analyses. Natural language pro-
cessing allows for processing of large amounts of text
that would not be possible using manual efforts.

NLP has many applications in radiology. Some appli-
cations that have been explored include diagnostic sur-
veillance, cohort building for epidemiological studies,
quality assessment, and clinical support services [6].
As radiology reports become more standardized, NLP
techniques that use radiology reports as input will only
become more reliable and consistent. Other studies have
reported success in identifying recommendation state-
ments [1, 2, 7, 8]. NLP techniques vary, but some fun-
damental procedures exist in most NLP pipelines.
Generally, free text is first preprocessed, in an attempt
to reduce the text to its fundamental semantic content.
Then specific quantitative information, or features, are
calculated from the processed text, which is used to
train machine learning algorithms. This process is heavi-
ly dependent on the goals of the pipeline.

Methods

Dataset

The data set used in this study comprises reports for 6000
randomly sampled abdominal MRI, CT, and ultrasound exam-
inations performed in 2016 and 2017 at one of the three hos-
pitals in our urban health system. All these reports contained a
numeric label assigned to the liver, pancreas, kidneys, and
adrenal glands that reflects the degree of suspicion for malig-
nancy in focal masses affecting these organs [9]. The labels
categorize focal masses as benign, indeterminate, suspicious,
or known malignancy. Patients with indeterminate lesions are
expected to get follow-up imaging, while those with suspi-
cious lesions are expected to get a biopsy or surgical resection.
For our analysis, reports containing an indeterminate or sus-
picious label were considered as requiring follow-up, and all
other studies were considered as not requiring follow-up. The
template containing the numeric labels was stripped from all
reports before our analysis. We used an 80:20 training set to
test set ratio where 1200 radiology reports were randomly
selected to be in the test set, and the remaining 4800 radiology
reports were used for training (Table 1).

Classification Problem Formulation

To more rigorously formulate the problem, we create a binary
classification function, which converts a free text report to a
binary output. The classifier takes an input X = [x1, …, xk], a
sequence of word tokens, and outputs a probability, from 0 to
1, that the input contains a follow-up recommendation.
Depending on the preference for sensitivity or specificity, a

Table 1 Number of reports by modal i ty and fol low-up
recommendation

US 2646

Follow-up indicated (+) 249

No follow-up indicated (−) 2397

Prevalence 9.4%

CT 2557

Follow-up indicated (+) 324

No follow-up indicated (−) 2233

Prevalence 12.7%

MR 797

Follow-up indicated (+) 162

No follow-up indicated (−) 635

Prevalence 20.3%

All modalities 6000

Follow-up indicated (+) 735

No follow-up indicated (−) 5265

Prevalence 12.3%
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cutoff value is chosen such that any probability higher than the
cutoff value is classified as containing a follow-up recommen-
dation and any probability lower than the cutoff value is clas-
sified as not containing a follow-up recommendation. The
pipeline uses the Python programming language (version
3.6.2) and the Natural Language Toolkit package (version
3.2).

Text Processing

The first portion of the pipeline involves using NLP to gener-
ate features for the machine learning algorithm. We first pre-
process reports by converting all report text to lower case and
removing all punctuation, symbols, and numbers. We then
perform tokenization where each word is segmented, so that
each report is represented by a list of words. Stop words,
commonly used words that do not provide semantic value
such as “the” and “a,” were removed. Each remaining word
was then reduced to its word stem using the Porter stemming
algorithm [10], a commonly used stemmer. Some English
words are ambiguous in their word stem, such as the word
“axes” ambiguously being the plural of either “ax” or “axis,”
but these cases rarely arose in our data set.

As an example, the following report text:

“Recommend contrast-enhanced MRI for further
characterization.
ATTENDING RADIOLOGIST AGREEMENT: I have
personally reviewed the images and agree with the pre-
liminary report without modification.”

becomes the following after going through the preprocess-
ing pipeline:

“recommend contrast enhanc mri further character at-
tend radiologist agreement have person review imag
agre with preliminari report without modif“

Feature Engineering

We then generated feature vectors using the bag-of-
words model. In this model, the term frequency of n-
grams constitutes the features. We adjusted the number
of unigrams, bigrams, and trigrams, and explored pa-
rameters for optimal performance. In general, the bag-
of-words model creates a large number of features as
the number of words in the vocabulary of all reports
greatly exceeds the number of reports. If including n-
grams with n > 1, then this potentially adds all combi-
nations of n words. The number of features, n, greatly

exceeds the number of input reports, N. Hence, features
must be reduced in order to avoid overfitting of data,
which is always a concern when n > N. Large feature
spaces also increase computation time. In our approach,
we first filter out all n-grams which occur in fewer than
10 reports to increase the generalizability of the model.
During feature engineering, we found monograms,
bigrams, and trigrams, to be most useful for model per-
formance. Most n-grams with n > 3 occurred in fewer
than 10 reports, and so would not be generalizable to
new radiology reports.

We then further reduce the dimension of the feature space
by preserving the most informative features determined by
joint mutual information [11]. Bigrams and trigrams were of-
ten the most informative features and allowed for important
context to be used by the machine learning algorithms. For
example, the model learned that follow-up imaging recom-
mendations often were at the conclusion of the report, follow-
ed by an attending radiologist agreement. The model associ-
ates the trigram “character attend radiologist” derived from
“… r ecommended fo r fu r the r cha rac te r i za t ion .
ATTENDING RADIOLOGIST AGREEMENT” with
follow-up imaging. However, the bigram “further characteri-
zation” by itself was not predictive as many lesions were de-
scribed as “not further characterized” and did not need follow-
up. The position of the word “characterization” at the end of
the report was important information conveyed by the trigram.
The selection of the 1500 most informative features yielded
the highestF-scores. Usingmore features increased runtime of
training models without increasing F-scores.

Machine Learning Classification

Once features were generated, we compare three ML
algorithms: naïve Bayes, decision tree, and maximum
entropy (also referred to as the log-linear model). The
NLTK implementation of each algorithm was used. The
naïve Bayes classifier which independently assesses
each feature does not have modifiable parameters nor
randomized initial values, so the model generated for a
given data set is identical each time. For the maximum
entropy model, we employed the MEGA Model
Optimization package [12] for parameter optimization
and used 10 as the maximum number of iterations, as
greater than 10 iterations showed marginal improve-
ments. The decision tree uses the ID3 algorithm which
optimizes for information gain. Parameters were set as
100 for maximum depth and 0.05 as the entropy cutoff.
Increasing the depth parameter further did not improve
performance. Finally, performance between the models
was compared using accuracy and F-score of the algo-
rithm on the testing data set.
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Results

Of the 6000 reports used in the study, 735 reports contained
follow-up recommendations, representing a 12.3% preva-
lence. The reports were randomized into training and testing
sets in an 80:20 ratio. The training set contained 595 reports
with a follow-up recommendation and 4205 without. The test-
ing set contained 140 reports with a follow-up recommenda-
tion and 1060 without.

After varying the number of features and preprocessing
steps, it was found that the best F-scores were achieved using
tokenization and Porter stemming. In terms of feature selec-
tion, many trigrams were found to have high mutual informa-
tion, and so we included unigrams, bigrams, and trigrams in
the bag-of-words model. The top 10most informative features
are shown in Table 2.

With the aforementioned feature engineering techniques
applied, the naive Bayes, decision tree, and maximum entropy
models achieved accuracies of 74.5%, 86.1%, and 81.0% re-
spectively. Table 3 displays the accuracy, F1 score, sensitivity,
positive predictive value (PPV), specificity, and negative pre-
dictive value (NPV) of each ML model. The best overall
performing model was found to be the decision tree model.
Table 4 displays the full confusion matrix of the decision tree
model.

Discussion

Our results show that in the follow-up recommendation detec-
tion task, performance of the classifier is dependent on NLP
processing techniques, feature selection, and choice of ML
algorithm. There exist increasingly advanced NLP processing
techniques and ML models, such as global vectors for word
representation [13], word2vec for creation of word embedding
features, recurrent neural networks, and convolutional neural
networks [14]. Nonetheless, this study focuses on traditional
NLP techniques and adds to the current literature by assessing

multiple traditional ML models simultaneously on a broad set
of abdominal radiology reports. Moreover, there is a lack of
literature comparing different ML algorithms in this specific
classification task. Our findings agree with existing literature
in NLP radiology applications that overall performance is de-
pendent on combined optimization of NLP and ML algo-
rithms [15–17]. In particular, selection of the most informative
unigrams, bigrams, and trigrams with the decision tree model
resulted in the highest performance in this task.

The decision tree model has a recall of 50% and a
precision of 42%. The low precision compared to NPV
is partially expected considering the low prevalence of
follow-up indications in the data set. While perhaps not
robust enough yet for clinical usage, this study demon-
strates proof of concept and underlines the strength of
the ML decision tree algorithm. Decision trees are well
suited to tasks in which hierarchical categorical distinc-
tions can be made [18]. We postulate that the decision
tree model may have increased performance in the
follow-up detection task over the other algorithms.
Follow-up imaging is indicated in a number of scenarios
and our data set contains a variety of imaging modali-
ties and organs. This multitude of scenarios leading to a
follow-up imaging recommendation may be better
parsed by a decision tree classifier. In comparison, a
naive Bayes classifier will consider each n-gram feature
independently and thus will miss information related to
the clinical scenario which might be represented as
combinations of features. Maximum entropy models
are theoretically appropriate for sparse feature sets, such
as those generated by NLP techniques, wherein the
number of features often exceeds the number of training
inputs (n > N). We have, however, limited our feature
set to 1500 features which offered improved perfor-
mance in all models.

In our specific problem, follow-up imaging is indicated in
ambiguous situations where malignancy can neither be ruled
out nor confirmed. In contrast to typical diagnostic surveil-
lance, where a model may be designed to detect a specific
diagnosis, follow-up detection is inherently challenging as
the indication for follow-up imaging may be clinically ambig-
uous. In essence, the algorithm must recognize when the like-
lihood of malignancy is neither too high to nor too low. The
need to recognize two boundary conditions, as opposed to just
one, like in many other diagnostic surveillance tasks, makes
follow-up recommendation detection challenging. Other stud-
ies have successfully extracted recommendation sentences [1,
2, 7, 8], which may contain recommendations for follow-up,
but this approach detects the radiologist’s literal advice, such
as “follow-up CT is recommended in three months.” Thus,
this approach is not a classification task with true-negative
results and also does not address reports requiring follow-up
without a specific follow-up recommendation sentence,

Table 2 Most informative features in training set

Feature Follow-up indication ratio

renal neoplasm 51.9:1.0

evalu with enhanc 38.4:1.0

character attend radiologist 33.9:1.0

treatment zone measur 29.3:1.0

mri month 25.7:1.0

better evalu with 24.8:1.0

thi singl phase 24.8:1.0

measur most like 23.0:1.0

zone measur 23.0:1.0

malign not exclud 23.0:1.0
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certainly a scenario that could lead to missed follow-up. NLP
andmachine learning algorithms have shown utility in various
tasks, but there is a lack of literature comparing different ML
algorithms in this specific task.

With regard to feature engineering, we have noted that the
inclusion of informative unigrams, bigrams, and trigrams are
beneficial to performance. Table 2 shows the most informative
features as determined by joint mutual information.
Unsurprising are n-grams such as “malign not exclud” and
“better evalu with.” Certain clinical features such as “renal
neoplasm” are also highly correlated with an indication for
follow-up imaging. This suggests that clinical semantic anal-
ysis using lexicons may be a useful generator of features.
Semantic knowledge has been shown to be useful in other
diagnostic surveillance tasks [19]. Though there is a lack of
specific clinical indications for follow-up imaging, additional
semantic processing could further separate institutional or in-
dividual radiologist’s stylistic preferences from the underlying
semantic meaning.

Further analysis of informative features revealed n-grams
that indicate uncertainty, such as “lesion incomplet,”
“indetermin lesion,” and “not exclud.” More direct attempts
at determining uncertainty may be beneficial in future pur-
suits. Intuitively, a radiology report that has high uncertainty
will warrant follow-up imaging to gain further information on
a lesion. Uncertainty, however, while highly prevalent in re-
ports requiring follow-up, is also prevalent in radiology re-
ports that do not require follow-up. Integrating uncertainty
metrics as features may yield performance benefits and other
recent studies have suggested methods for quantifying uncer-
tainty [20].

To address limitations in our study, our data set, while
sizable, was also broad. It contained 3 imaging modalities, 4
organ systems, multiple radiologists, and a low prevalence of
follow-up imaging. This resulted in 735 total radiology reports
with follow-up recommendations. With 20% of reports being
set aside for testing, around 600 reports with follow-up

indications were left over for the algorithm to learn from.
Moreover, all reports came from our tertiary care center and
therefore this study lacks inter-institutional validation. Inter-
institutional reporting variation is a well-documented concern
in applying NLP algorithms to radiology reports [6]. For ex-
ample, our model has learned features that are not generaliz-
able to all institutions. The n-grams representing attending
attestations allow the model to infer which words are at the
conclusion of a report. For institutions without attending at-
testations, our model will be unable to use those features.

With regard to report language style, our institution man-
dates a coding scheme to categorize lesions in abdominal im-
aging which may make our abdominal radiology reports non-
generalizable. With knowledge that a code must be assigned,
radiologists may be more mindful in characterizing lesions or
radiologists may shorten the free text since there will be a
numerical code with the report. Since the system was intro-
duced in 2013, our radiologists are aware that this is an addi-
tion to the interpretation that they would otherwise issue. Our
goal has never been to change the way radiologists write their
reports, and we have repeatedly emphasized that with the
users of the system. The code is used just for machine read-
ability, and it is commonly understood by radiologists that the
report should contain standard text conveying the recommen-
dation in addition to the code. Part of the motivation behind
the use of the templates is to enable automated identification
and tracking of patients with indeterminate or suspicious
findings.

Another limitation of this study is that ground truth is de-
termined by the assigned numerical category, which is not
infallible. A fair comparison of performance would involve
review of free text reports without the associated imaging by
radiologists, as the algorithm only analyzes the free text re-
port. Nonetheless, this limitation highlights the potential ben-
efit of using NLP algorithms as an adjunct to structured re-
ports. Structured reporting allows for fast and simple access to
follow-up recommendations but comes at the cost of

Table 3 Performancemeasure for
each of the machine learning
models after optimal
preprocessing and feature
engineering

Accuracy
(%)

F1 score
(%)

Sensitivity
(%)

PPV
(%)

Specificity
(%)

NPV
(%)

Naïve Bayes 74.5 38.1 67.1 26.6 75.5 94.6

Decision tree 86.2 45.8 50.0 42.2 90.9 93.2

Maximum
entropy

81.2 38.7 50.7 31.3 85.3 93.0

Table 4 Confusion matrix for the
decision tree model predictions
on the test set

Predicted label

Follow-up indicated No follow-up indicated

True label Follow-up indicated 70 70

No follow-up indicated 96 964
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additional effort by radiologists, and may be coded incorrectly
or not coded at all. Automated detection does not require
additional effort by radiologists, but is less accurate.
Institutions implementing structured reporting can use NLP
algorithms to help generate structured fields or validate
existing structured fields. If implemented in real time, such a
system could create an alert that a report has a high probability
of requiring follow-up imaging. This could be done while the
radiologist is dictating the report and increase the compliance
with follow-up recommendation protocols.

Conclusion

Our conclusions must be interpreted with the aforementioned
limitations in mind. The decision tree model shows unexpect-
ed robustness compared to naive Bayes and maximum entro-
py models. Careful selection of features that have predictive
power was also critical to performance. Follow-up recommen-
dation detection is a challenging task that can certainly be
addressed by explicit structured reporting of follow-up recom-
mendations, but until a standardized system of doing so be-
comes prevalent in radiology, NLP andML powered automat-
ed detection algorithms may assist in tracking the many pa-
tients who are at risk for adverse events due to delayed or
missed follow-up imaging. While it is a complex task that is
dependent on factors such as the institution, imagingmodality,
and individual radiologist’s language, careful feature engi-
neering and appropriate selection of machine learning algo-
rithms are important strategies to improve the performance of
follow-up detection classifiers.
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